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Growth criteria for solvent crazes 
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Single methanol crazes are grown from sharp cracks in polymethylmethacrylate. Double 
exposure holographic interferometry is used to determine the sequential strain energy 
release rates G and opening displacement profile of the craze from the initiation of 
growth to its cessation. The craze stress profile is determined at various points in its 
growth from the opening displacement profiles using a Fourier transform method. The 
rapid increase in G observed just before the craze ceases to grow demonstrates that craze 
growth criteria based on the concept of a constant critical total strain energy release rate 
cannot be correct. Similarly, the large stress concentration which develops just behind 
the craze tip at growth cessation is incompatible with the assumption that the craze grows 
to a length that just eliminates a stress singularity at its tip (Dugdale model). This feature, 
however, would be expected if sufficient methanol cannot reach the fibrils just behind 
the tip of the craze to plasticize them fully. 

1. Introduction 
Solvent crazes grown from cracks normally cease 
to grow when they reach a length which depends 
on the applied stress, crack length, temperature, 
solvent and polymer molecular weight. Various 
criteria for the cessation of craze growth have been 
proposed. Kambour [1] has suggested that craze 
growth ceases because the polymer becomes 
oriented by the competing process of plastic 
(shear) flow ahead of the craze. Williams [2] has 
proposed that growth stops when enough debris 
(e.g., broken craze fibrils) accumulates within the 
craze that the flow of solvent to the craze tip is 
choked off. Graham e t  al. [3] have advanced the 
hypothesis that the craze stops when it reaches the 
length l predicted by the Dugdale model [4], i.e., 

ao 7TO 
- -  C o s -  

ao + l 2 0 f  

where crf is the flow stress of craze material 
(assumed to non-strain hardening) and ao is the 
crack length. Andrews and Bevan [5] have 
proposed that growth ceases when the strain 
energy release rate of the craze falls below a 
critical value, the minimum plastic work and 
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surface energy that must be supplied to generate a 
craze. 

To check these criteria, especially the latter two, 
it is necessary to be able to measure craze displace- 
ment profiles, craze stress profiles and craze strain 
energy release rates. We have shown previously 
that holographic interferometry can be used to 
determine these parameters [6, 7]. We report here 
the first measurements using this technique of the 
sequential strain energy release rates and opening 
displacements of growing solvent crazes from the 
initiation of craze growth to its cessation. 

2. Expe r imen ta l  
Methanol crazes were grown from sharp cracks in 
polymethylmethacrylate (PMMA). With this 
system, for which the kinetics of craze growth have 
been extensively investigated [8, 9],  it is possible 
to initiate and grow a single craze to a terminal 
length of several ram. The PMMA is a commercial 
grade (with Mw = 941 000 and M N =231 000) 
which was purchased from Westlake Plastics Co. in 
the form of 0.76 mm thick sheet. A sharp starter 
crack was grown from a notch in the edge of a 
15mm wide strip by stress cracking with 
n-butylacetate. After stress cracking the strip was 
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vacuum annealed just below the glass transition 
temperature to remove residual stress cracking 
agent and to heal out any small crazes at the 
crack tip. 

The specimen was painted white to enhance 
its reflectivity in the holographic experiment. 
Since the crazing liquid can interact with the 
paint causing blistering, a narrow path along the 
crack (and expected craze propagation) direction 
was masked during the painting process  by 
covering it with tape. The strips were placed in a 
tensile strain frame under zero load and methanol 
was introduced to the crack base using a wick: 
Since the cooling produced by methanol 
evaporating from the wick can introduce thermal 
displacements and thus spurious fringes in~ the 
hologram, the strip was allowed to come to a 
steady state temperature distribution which was 
achieved after about a 3 rain waiting period. The 
strip was then quickly extended in tension and the 
grips were fixed for the remainder of the 
experiment. A sequence of double exposure 
holograms then were recorded as the craze grew 
from the crack. The position of the craze tip for 
each hologram exposure was determined using a 
telemicroscope. The real and virtual images of the 
specimen could be reconstructed from the 
holograms and photographed. Details of the 
hologram recording and reconstruction steps 
have been published elsewhere [7, 10]. 

3. Results 
A typical reconstructed hologram for incremental 
craze growth is displayed in Fig. 1. The fringes 

represent lines of constant displacement along the 
tensile (strip axis) direction since control 
holograms taken during the growth increment 
show no inhornogeneous out-of-plane displace- 
ments as a result of craze growth [7]. The 
increment in displacement from one fringe to the 
next can be determined from the geometry of the 
hologram recording step and the Wavelength of the 
laser, taken to be A = 0.303/am. 

3.1. Craze open ing  d i sp l acemen t s  
Craze opening displacements can be determined 
by tracing the fringes to their termini on the 
craze line. Starting from the zero order fringe at 
the tip of the craze, the fringe order at every 
point along both sides of the craze can be found. 
Multiplying the order of a particular fringe by 
A gives the displacement w of the craze surface at 
this point. The total craze opening displacement 
(displacement between points on opposite surfaces 
of the craze) is 2w since the fringes enter 
symmetrically. Fig. 2 shows the cumulative craze 
surface displacement from sequential holograms 
during the growth of a methanol craze from a 
crack in  PMMA. Each hologram gives the 
increment in displacement from one curve to the 
next. (Due to the fact that the initial craze growth 
is relatively rapid, part of the second growth 
increment (from z = 1.97 to z = 2.30) was missed 
during the changing of the holographic plates. In 
this case the incremental displacement in the 
region 1.97 < z < 2.30 was extrapolated smoothly 
from the data between z = 2.30 and z = 2.52. For 
this reason stresses to be subsequently derived 

Figure 1 Virtual image reconstructed from a double exposure hologram of a PMMA strip containing a methanol craze 
which grew 0.35 mm between exposures. 
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Figure 2 Cumulative craze surface opening displacement 
profiles of  growing craze. 

from these data are somewhat suspect near the 
craze base z ~ 1.1 to 2, but near the craze tip they 
should be more accurate.) The shape of the craze 
opening displacement profile at the craze tip 
changes as the craze reaches its terminal length 
from a gently curving profile to one which shows 
very little opening immediately behind the craze 
tip and then a rapid increase in displacement at a 
further distance behind the craze tip. This change 
in craze tip displacement was also observed in 
other runs at the termination of craze growth 
and appears to be a general feature of methanol 
craze growth in PMMA. 

3.2. Craze stress prof i le  
We have shown previously that the craze stress 
profile along a line parallel to the craze but dis- 
placed from it can be approximately determined 
directly from the fringe pattern by measuring the 
spacing between fringes [7]. For the present 
purposes this procedure lacks the resolution 
necessary to determine accurately the stress over 
the spacing between fringes. We have adopted a 
Fourier transform procedure outlined by 
Sneddon[ l l ]  for converting crack opening 
displacement profiles to the surface stress Oy 
necessary to maintain this displacement; Knight 
[12] was the first to apply this method to crazes 

but he used arbitrarily chosen opening displace- 
ments which are rather far from those observed. 
The stress oy is given by 

Oy(Z) = - - (2 /Tr) f ;  p(~) cos (~z) d~cryy~ (1) 

where fi(~) is 

= f ;  w(z) cos dz (2) 

The latter integral is over the distance a from the 
base of the crack to the tip of the craze. The initial 
stress Oy(Z) before craze growth is taken to be that 
of the double-ended crack with the same stress 
intensity factor, KI = 0.515MNm -3n, as our 
single edged precrack in our finite specimen. The 
changes in oy(z) determined from the opening 
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Figure 3 Stress normal to the craze versus distance along the craze. Arrows represent the positions of  the craze tip. 
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displacements after each growth increment are 
added to the initial oy(z). The results correspond- 
ing to some of the displacement profiles in Fig. 2 
are displayed in Figs. 3a to f. The arrows in each 
of these figures represent the craze tip position 
determined optically.* 

The procedure outlined above is really only 
rigorous for a double-ended crack and craze in an 
infinite specimen. Nevertheless, since all 
components of stress can be computed at any 
position of the craze plane by taking the 
appropriate transform of p(~) [11] it is possible 
to compare the strain eyy computed from dis- 
placements using the double-ended crack model 
with the strain measured directly from the 
reconstructed hologram [10]. A comparison of 
the strain profiles along a line parallel to the craze 
but displaced from it shows the overall strain level 
from the double-ended crack/craze calculation is 
too high by about 20% but that the shape and 
position of the peak in strain at the craze tip is 
about the same for both methods [13]. The 
higher overall strain of the calculated profile is due 
to the applied tensile stress oyyoo which must be 
assigned a higher value for a double-ended cracked 
specimen than for  a single edge notched specimen 
if the same KI is to be achieved. Since the precrack 
length to specimen width ratio of the specimen 
being analysed is considerably smaller than that on 
which the comparison was made [13] the overall 
stress and strain levels computed from the double- 
ended crack model should be within 15% of those 
of the actual crack/craze. 

One further caution about interpertation of the 
stresses at the craze tip is in order. The local stress 
at the craze tip is very sensitive to the local 
derivative of displacement. A discontinuous 
derivative of displacement at the craze tip gives 
rise to a singularity in the stress at that point [14]. 
Since we can only sample the displacement at a 
small number of points in that vicinity (corre- 
sponding to the fringes on the reconstructed 
hologram) it follows that the very localized 
displacement derivatives and thus very local 
stresses can not be specified with accuracy. It is 
possible, and in our opinion likely, that the very 
local stress, within a few microns behind the craze 
tip, rises to the value close to the stress necessary 
to craze the dry polymer. 

3.3. Strain energy release 
The strain energy released AU per unit thickness 
of specimen during a growth increment may be 
computed using three different methods. In the 
first method AU O) is determined from 

AU O) = -- ---~ ZkP (3) 
2B 

where Ag is the original (fixed) grip displacement, 
B is the sample thickness and z3a D is the change in 
tensile force due to the craze growth increment 
[6]. The spacing (parallel to the tensile axis) 
between fringes is used to establish the average 
change in tensile strain (6eyy) on a cross-section 
of the specimen far from the craze [6, 7] ; z2uo can 
then be computed from Hooke's law. In the 
second method the incremental opening displace- 
ment at the base of the crack is used to estimate 
&U (2) approximately following the procedure 
outlined by Krenz e t  al. [7]. Finally, since both 
craze surface displacements and stresses have been 
determined, AU t3) may be computed as 
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Figure 4 Strain energy release rate of growing craze 
averaged over the growth increment as a function of craze 
length. For comparison the average strain energy release 
rate for a crack growing the same distance is shown. 

*The computat ion procedure was checked using the displacements from the Dugdale model [4] and found to give 
cry(z) within 2% of the correct values except very near the discontinuity at the crack tip where it varied smoothly from 
0 to the flow stress. 
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TABLE I 

,~ aUem ~ AU(e~ aVO)o~ AU(e~ 
(ram) (Jm -I) (Jm -x) (Jm -l) (Jm -1) 

Z AUc~k Z AU(e~ze AUO)e~ (Gti p ) 
(Jm-~) (Jm-~) base tip ( Jm~)  

(Jrn -1 ) (Jm -~ ) 

1 . 1  . . . .  

1.97 0.125 0.080 0.075 0.070 
2.62 0.167 0.080 0.095 0.081 
2.97 0.125 0.055 0.060 0.058 
3.24 0.113 0.085 0.085 0.095 
3.54 0.156 0.090 0.080 0.084 
3.64 0.058 0.075 0.100 0.081 
3.80 0.100 0.105 0.145 0.103 

0.125 0.080 - 0.070 80 
0.922 0.160 0.057 0.024 37 
0.417 0.215 0.055 0.003 8 
0.530 0.300 0.090 0.005 18 
0.686 0.390 0.080 0.004 13 
0.744 0.465 0.080 0.0005 5 
0.844 0.570 0.101 0.0005 3 

c a  
AU O) = 2 . ]o  ~ ( z ) w ( z ) d z  (4) 

where e~(z) is the average at position z of  the 
stress before, and the stress after, the increment of  
craze propagation. These three estimates of  AU 
are tabulated in Table I together with the position 
a of  the craze tip at the end of  the growth incre- 
ment. It is apparent that there is reasonable agree- 
ment among these different methods of  deter- 
mining AU. For comparison the AU for a crack 
propagating the same increments as the craze is 
also tabulated. The average strain energy release 
rate (G) over the growth increment &a is 

(a> = A u / ~  (5) 

This quantity is plotted in Fig. 4 versus the average 
craze tip position (z) during the growth increment. 
The average strain energy release rate for a crack 
propagating the same distance as the craze is also 
given as the solid line. 

4. Discussion 
One intuitively expects that the strain energy 
release rate for a craze should decrease with 
increasing craze length until it falls below some 
critical value at which point growth stops. Fig. 4 
shows that just the reverse is true; the strain 
energy release rate increases rapidly with 
increasing craze length and achieves its highest 
values, which exceed the strain energy release rate 
for a crack of  the same length, just before craze 
growth ceases. The apparent paradox is removed if 
one realizes that the strain energy release rates of  a 
crack and a craze are fundamentally different. For 
a crack propagating an incremental distance, there 
is no work done behind the original crack tip 
(Oy(Z) is zero there); however since ey(Z) for a 
craze is finite behind the original craze tip (the 
craze base), work is done in opening this section 

and in fact contributes a major portion of  the 
strain energy released. By breaking Equation 4 up 
into the sum of  two integrals, one over the craze 
base and one over the incremental distance Aa 
propagated (craze tip), one can compute the 
contributions of  these two regions to AU as 
follows: 

f 
c +a--Aa 

zxu(d  = 2 
oC 

( ' c + a  _ _  

^r~(a) = 2 J g , ( z ) w ( z ) d z  
~ ' - '  t i p  C + a - - A  

(6) 

The results, displayed in Table I, show that the 
craze base contributes over 99% of  the strain 
energy released near the terminal craze length. In 
fact, it is possible to achieve an infinite strain 
energy release rate after the craze growth stops 
since the craze base fibrils can continue to relax, 
and the craze base to open, even if the craze tip 
does not advance; Krenz [13] has obtained a 
hologram of  such a craze which opened but did 
not grow in length. All that  is required is that  the 

, cumulative strain energy released be less than that 
of  a crack (that this is true in our case is confirmed 
by a comparison of  NAUerae k with ~AUeraze in 
Table I); the strain energy release rate of  a craze 
can be much larger than that of  a crack. 

Clearly the total strain energy release rate 
cannot be interpreted as a craze extension force. 
One is tempted to use the strain energy release rate 
from the tip section (Gtip)~AUcrazetip/Z~l for 
this purpose. Unlike the total strain energy release 
rate (Gti p) decreases as the craze lengthens, as 
shown by the last column in Table I. Nevertheless 
this decrease in(Grip)occurs not  because the stress 
at the craze tip decreases (Fig. 3) but because the 
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opening displacement just at the craze tip becomes 
smaller and smaller in response to this stress just 
before the craze stops (Fig. 2). This feature of the 
results is in disagreement with the assumptions of 
the Andrews and Bevan [5] proposal. Just as 
clearly the stresses in the craze are not approach- 
ing the constant value expected from the Dugdale 
model as proposed by Graham et al. [3], but 
rather a pronounced stress concentration develops 
behind the tip of  the craze just before it stops. 
This feature would be expected if sufficient 
methanol cannot reach the fibrils just behind the 
tip of craze to plasticize them fully. It is not 
necessary, however, that the craze actually clogs 
with debris as suggested by Williams [2]. It is 
proposed elsewhere [15] that the solvent craze is 
actually preceded by a very short length of dry 
craze that is necessary to achieve mechanical 
equilibrium, and that the craze stops when the 
fibril volume fraction vf in the solvent craze, just 
behind the short air craze tip, becomes so large 
that fluid transport through this zone becomes 
negligibly small. Since the hydraulic permeability 
of the craze very rapidly decreases as vf increases, 
negligible fluid transport occurs when vf is still less 
than one, especially when the volume swelling of 
the fibrils with solvent is taken into account. (The 
volume fraction of methanol absorbed in PMMA at 
equilibrium is 25% at room temperature [16]). It 
may also be that these high stresses at the craze tip 
in the absence of solvent produced orientational 
shear flow in a zone ahead of the craze as 
suggested by Kambour [1], although there is no 
evidence from our holograms of a large zone 
(greater than 0.1 mm in diameter) of this type. 
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